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Abstract

Random-effects meta-analysis within a hierarchical normal modeling framework is commonly implemented in a wide
range of evidence synthesis applications. More general problems may even be tackled when considering meta-regression
approaches that in addition allow for the inclusion of study-level covariables. Here we describe the Bayesian meta-
regression implementation provided in the bayesmeta R package including the choice of priors. To illustrate its practical
use, a wide range of example applications are given such as binary and continuous covariables, subgroup analysis,
indirect comparisons, and model selection. Example R code is provided, and, due to the avoidance of MCMC methods,
computations are fast and reproducible, faciliting e.g. large-scale simulation studies.
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1. Introduction

In the course of scientific endeavour it is often neces-
sary to assess the compiled evidence from several sepa-
rate sources, e.g., from independent experiments. Meta-
analysis methods have emerged as a popular class of tools
to perform such evidence syntheses, which are nowadays
commonplace in many scientific disciplines [7, 29].

A simple, versatile and common approach to
meta-analysis is given by the normal-normal hierarchical
model (NNHM), where measurement uncertainty as well
as variability between measurements are implemented
using normal distributions [31, 30]. Inference within the
NNHM framework may be tackled in different ways, and
a Bayesian approach has proven particularly useful
[62, 60, 66, 71]. The technical implementation is
commonly facilitated using Markov chain Monte Carlo
(MCMC) methods [24]. However, the relatively simple
NNHM also lends itself to a semi-analytical solution
using the direct algorithm [54]. Meta-analysis within
the generic NNHM is implemented in the bayesmeta

R package [52, 53].
The simple NNHM is readily generalized to a meta-

regression model that allows for the consideration of addi-
tional covariables (at the level of individual estimates, i.e.
the level of the studies or experiments) in a meta-analysis
[43, 68, 69, 36]. This common model extension may again
also be analyzed via the direct approach, technically by
extending from one-dimensional (conditional or marginal)
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posterior distributions of a single “overall mean” or “in-
tercept” parameter to higher-dimensional posterior distri-
butions of a set of regression coefficients. This approach
was recently implemented and included in the bayesmeta

R package; the present paper gives an overview of the new
functionality and showcases its application in a range of
different analysis scenarios.

Meta-regression methods aim to attribute differences
apparent between individual empirical estimates to avail-
able covariables, and with that will reduce the between-
study variance (heterogeneity) — just like consideration of
additional covariables in an ordinary regression will gen-
erally improve the model fit and increase the coefficient
of determination [45]. Meta-regression analyses are hence
often seen in the context of the exploration of (potential)
sources of heterogeneity [67, 34], with the intention to re-
duce or eliminate any unexplained variance and reduce
bias [59, 1, 17, 47]. However, Thompson and Higgins [68]
caution that associations derived from meta-regression are
observational in nature and that data dredging may be an
issue, while Hartung et al. [30] also point out the dan-
ger of overfitting due to the commonly small sample sizes
(numbers of studies). With that, the statistical power to
identify covariables will commonly also tend to be low [33].
Cooper [12] in this context distinguishes between the con-
cepts of study-generated and synthesis-generated evidence,
and cautions that in general only the former may allow
to infer causal relationships. Such issues might to some
extent be addressed by pre-specification of analyses [64],
while caution should be advised in general in order to avoid
methodological problems (such as ecological fallacy) [21].
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While the scope of meta-regression methods is very
broad, in practice a large number of practical applications
are concerned with the investigation of subgroups of es-
timates, which on the technical side means the consider-
ation of binary “indicator” covariables. Such situations
are often dealt with by simply analyzing groups of stud-
ies separately or jointly [42, 18]. Meta-regression provides
an alternative approach by allowing for differences in sub-
group means while assuming a common heterogeneity vari-
ance. The use of meta-regression methods here has the ad-
vantage that questions regarding differences between sub-
group means are readily addressed, and that in particu-
lar in case of “small” subgroups, pathological behaviour is
avoided through the borrowing of information on the het-
erogeneity (nuisance) parameter that is effectively taking
place [35, 17, 69, 18].

The meta-regression implementation described here fa-
cilitates a range of applications, including parameter esti-
mation, prediction, shrinkage estimation, indirect compar-
isons, sensitivity analyses, model selection or model aver-
aging. In the following, familiarity with some basics of
(Bayesian) random-effects meta-analysis is a bonus [53],
but is not strictly necessary. Methods will be introduced
with a focus on applications rather than on theoretical
background. The remainder of the manuscript is struc-
tured as follows. In Section 2, the random-effects meta-
regression model (i.e. NNHM with covariables) is intro-
duced, including more guidance on model specification de-
tails, in particular the parametization of covariable effects
and prior distributions, while some technical details and
aims are also covered. Example applications follow in Sec-
tion 3; here we provide a wide range of potential applica-
tions with code snippets illustrated by real data. We close
with a brief discussion in Section 4.

2. The random-effects meta-regression model

2.1. The data model

Meta-regression can be facilitated through a general-
ization of the normal-normal hierarchical model (NNHM)
that is commonly used for random-effects meta-analysis
[71, 53]. The model here is extended in order to consider
linear effects of a set of study-level covariables.

Suppose that a set of estimates from k studies are to
be modelled. We then have k estimates yi ∈ R (where
i = 1, . . . , k) with standard errors σi ∈ R+, which are
assumed known. For each of the k estimates, we also have
a set of corresponding covariables xi ∈ R

d of dimension d.
Such (study-level) covariables are sometimes also denoted
as moderators.

It is then assumed that each estimate quantifies an un-
derlying parameter θi with a normally distributed offset
whose magnitude depends on the standard error σi:

yi|θi, σi ∼ Normal(θi, σ
2
i ). (1)

The study-specific mean (θi) then depends linearly on the
covariables xi via a d-dimensional coefficient vector β.

However, even for an identical set of covariables, the
mean may vary from study to study due to additional
(normally distributed) variability:

θi|xi, β, τ ∼ Normal(β1xi1 + . . .+ βdxid, τ
2). (2)

Besides measurement or sampling errors (σi), the between-
study variation is hence determined both by effects of co-
variables xi as well as by heterogeneity that is quantified
through τ . The model may also be formulated via the
marginal expression

yi|xi, β, τ, σi ∼ Normal(β1xi1 + . . .+ βdxid,

σ2
i
+ τ2). (3)

It is often convenient to alternatively view the model
in vector/matrix terminology; here we may re-write equa-
tions (1)–(3) as

y|θ, σ ∼ Normal(θ, Σ)

where Σ = diag(σ2
1 , . . . , σ

2
k
), (4)

θ|X, β, τ ∼ Normal(Xβ, τ2I), and (5)

y|X, β, τ, σ ∼ Normal(Xβ, Στ )

where Στ = Σ + τ2I, (6)

where the data are given in terms of the vectors of esti-
mates y ∈ Rk and standard errors σ ∈ Rk

+, and the set
of covariables forms the regressor matrix X ∈ Rk×d, with
rows corresponding to studies, and columns corresponding
to different variables.

The unknowns in the model are the study-specific ef-
fects θi ∈ R, the heterogeneity τ ∈ R+, and the vector
of coefficients β ∈ Rd of dimension d. Prior distributions
need to be specified for τ and β. In order to include an
“intercept” (overall mean) term in the regression, one may
specify one of the covariables (e.g., the first column of X)
as xi1 = 1 for i = 1, . . . , k. Also, if only an intercept term
is considered, the model again simplifies to the “plain”
meta-analysis model [53].

2.2. Prior and data specification

2.2.1. Effect and heterogeneity priors

Prior specification works similarly to the simple
random-effects meta-analysis model [53]; guidances
provided for sensible specifications of heterogeneity (τ)
priors largely apply here as well [53, 56].

Due to the implementation used in the bayesmeta

package, priors for the β coefficients may be specified as
(proper) multivariate normal or (improper) uniform only.
These generic forms will however be appropriate to cover
a majority of common applications.

2.2.2. Alternative model specifications

What becomes crucial in addition then is the model
specification, i.e., the setup of covariables xi eventually
constituting the regressor matrix (or design matrix ) X .
Different, and to some extent equivalent, conventions are
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conceivable in order to approach the same analysis prob-
lem. This holds in particular in the context of binary co-
variables, which then imply different interpretations of the
associated parameters (coefficients) and with that some-
times differing prior settings. A simple example involving
binary covariables is illustrated in Table 1. Suppose three

Table 1: Illustration of different popular binary regressor matrix (X)
codings for an example setting involving k = 7 studies in d = 3
subgroups. On the left-hand side, the three regression parameters β1

to β3 simply correspond to the three groups’ means. On the right-
hand side, β⋆

1
again corresponds to the mean in group A, which also

serves as a “reference”. Parameters β⋆

2
and β⋆

3
correspond to the

differences (“contrasts”) between the means within groups A and B
and groups A and C, respectively.

“group mean” “intercept/offset”

parametrisation parametrisation

i subgroup xi1 xi2 xi3 x⋆
i1 x⋆

i2 x⋆
i3

1 A 1 0 0 1 0 0
2 A 1 0 0 1 0 0
3 B 0 1 0 1 1 0
4 B 0 1 0 1 1 0
5 B 0 1 0 1 1 0
6 C 0 0 1 1 0 1
7 C 0 0 1 1 0 1

groups of studies (labelled A, B and C) are given, which
may be identified using indicator variables as regressors in
the design matrix X . Two possible setups are shown here;
on the left-hand side, the first study’s mean is modeled as
(see equation (3)) β1x11 + β2x12 + β3x13 = β1, whereas
the third study’s mean is β1x31 + β2x32 + β3x33 = β2.
The three β parameters hence directly correspond to the
three group means. On the right-hand side, the first study
is modelled in the same way, however, the third study’s
mean is β1x31+β2x32+β3x33 = β1+β2. The second coeffi-
cient (β2) hence corresponds to the difference (or contrast)
between groups A and B, while group A serves as a “ref-
erence”. Either way of formulating models may have its
merits, and switching from one to another corresponds to
a transformation between differing parameter spaces [23,
Sec. 1.8]. Prior settings for the regression coefficients may
have differing implications in different model setups, and
prior settings in one parametrisation may be translated to
another by considering the transformation step.

More specifically, in the example from Table 1, the
right-hand side (“intercept / offset”) parametrization re-
sults from the left-hand side (“group means”) via a linear
transformation β → β⋆, where

β⋆ =





β⋆
1

β⋆
2

β⋆
3



 =





β1

β2 − β1

β3 − β1





=





1 0 0
−1 1 0
−1 0 1









β1

β2

β3



 = Aβ. (7)

Implications of prior assumptions in one parametrization
may be derived by considering the transformation’s ef-
fect on the transformed random variable [23, Sec. 1.8]. In
this case, if a normal prior with mean µ and variance Σ
was assumed for β, then this implies a normal prior with
mean Aµ and variance AΣA′ for the transformed param-
eter set β⋆.

Transformations between alternative parametrisations,
which may also be the result of transformations of the
original data, are often useful to simplify interpretation, or
in order to avoid numerical problems. These may also arise
in the context of continuous covariables, for example, when
re-expressing fractions as percentages, or when “centering”
covariables by subtracting their mean levels.

2.3. Inference

2.3.1. Technical implementation

In the bayesmeta R package, the direct algorithm
is utilized to facilitate meta-analysis within the NNHM
framework via the bayesmeta() function [54]. In con-
trast to the “simple” meta-analysis setup considered pre-
viously by Röver [53], instead of a single “overall mean”
parameter µ, the meta-regression model now involves a
d-dimensional coefficient vector β, which means that some
analytic expressions need to be generalized to their mul-
tivariate analogues; the basic algorithm for deriving the
posterior distributions however may still be applied anal-
ogously.

The meta-regression functionality is provided by the
new bmr() function; its main input arguments are:

y: a vector of estimates (yi) of length k

sigma: a vector of associated standard errors (σi) of
length k

X: a regressor matrix (X) with k rows and d columns

tau.prior: a prior density function (f(τ)) for the hetero-
geneity τ (or a character string denoting a specific
form)

beta.prior.mean: a vector of prior means of dimension d

beta.prior.sd: a vector of prior standard deviations of
dimension d

To a large extent, the behaviour is similar to the
bayesmeta() function, especially with respect to the y,
sigma and tau.prior arguments [53]. The major
differences to the bayesmeta() function are that one may
specify an additional “X” argument giving the regressor
matrix (X), and that the posterior, instead of referring
to only a single effect µ, now involves a d-dimensional
parameter vector β. By default, if the tau.prior,
beta.prior.mean and beta.prior.sd arguments are left
unspecified, (improper) uniform priors are assumed for τ

and β. If an X argument is not supplied, a single-column
matrix of ones is used, so that the analysis simplifies to
fitting a single “intercept” parameter.

3



2.3.2. Aims

Inference within a meta-regression application may be
aimed at a range of different aspects, e.g., joint or marginal
distributions of regression coefficients (βi), linear combi-
nations of coefficients (x′β), investigation of heterogene-
ity (τ), shrinkage estimation (θi), or prediction (θk+1|x).
Posterior distributions of all these figures are available
from the bmr() function’s output. It is possible to access
these directly from the object returned by the bmr() func-
tion, however, many relevant figures are included in the
default output, and it is often convenient to request cer-
tain figures to be included e.g. in a summary printout or
a forest plot. Ways to retrieve such figures are illustrated
alongside the example applications below.

3. Applications to illustrate the versatile use of

meta-regression with bayesmeta

3.1. Binary covariable

3.1.1. Inferring two means

Crins et al. [13] reported on a meta-analysis of studies
investigating the use of interleukin-2 receptor antagonists
(IL-2RA) for immunosuppression in pediatric liver trans-
plant recipients. Of primary interest was the occurrence
of acute rejection (AR) reactions, a common adverse event
that is supposed to be prevented by the medication. Two
different types of IL-2RAs were used, namely, basiliximab
and daclizumab. The rates of AR events in the studies’
treatment and control groups are summarized in terms of
odds ratios (see also [53]); the relevant data are shown in
Table 2.

Table 2: Data from the immunosuppression example. Each row here
summarizes a 2×2 contingency table in terms of a derived log-OR (yi)
and its associated standard error (σi). Two different types of IL-2RA
treatments were investigated (basiliximab and daclizumab).

study log-OR

i reference IL-2RA yi σi

1 Heffron (2003) daclizumab −2.31 0.60
2 Gibelli (2004) basiliximab −0.46 0.56
3 Schuller (2005) daclizumab −2.30 0.88
4 Ganschow (2005) basiliximab −1.76 0.46
5 Spada (2006) basiliximab −1.26 0.64
6 Gras (2008) basiliximab −2.42 1.53

We will perform a meta-analysis aiming to investigate
the mean effects for the two types of treatment; to that
end, we specify the regressor matrix X reflecting the
grouping of the data:

X =











0 1
1 0
0 1
1 0
1 0
1 0











. (8)

In analogy to the coding illustrated in Table 1, rows cor-
respond to the six observations, and columns correspond
to the two groups; the placement of zeroes and ones re-
flects the studies’ associations to one of the two medication
types. The investigation of differences in treatment effects
here technically implies the consideration of a possible in-
teraction between treatment and IL-2RA type. For the
heterogeneity parameter (τ), a half-normal prior distribu-
tion is appropriate in the context of a log-OR endpoint
[19, 53, 56]. For the regression coefficients (β1 and β2),
an (improper) uniform prior is used. First, the package
and the example data set need to be loaded, and the ef-
fect measures (log-ORs) may be derived using the metafor
package’s escalc() function:

R> library ("bayesmeta ")

R> data(" CrinsEtAl2014")

R> crins.es <- escalc (measure ="OR",

+ ai=exp.AR.events , n1i=exp.total ,

+ ci=cont.AR.events , n2i=cont.total ,

+ slab=publication , data=CrinsEtAl2014)

Then we may specify the regressor matrix X :

R> basil <- (crins .es$IL2RA ==" basiliximab ")

R> dacli <- (crins .es$IL2RA ==" daclizumab "))

R> X <- cbind(" basiliximab "=as.numeric (basil ),

+ " daclizumab " =as.numeric (dacli ))

R> X

basiliximab daclizumab

[1,] 0 1

[2,] 1 0

[3,] 0 1

[4,] 1 0

[5,] 1 0

[6,] 1 0

The bmr() function then works very similarly to the
bayesmeta() function [53]; estimates and standard errors
may be specified via the “y” and “sigma” arguments, or
the data may simply be supplied in terms of the object
returned from the escalc() function. The heterogeneity
prior is specified in terms of its probability density
function, and in addition the regressor matrix needs to
be provided via the “X” argument. We may hence specify

R> bmr01 <- bmr (y=crins.es$yi,

+ sigma=sqrt(crins .es$vi), X=X,

+ tau.prior=function (t){ dhalfnormal (t,s=0.5)})

or simply

R> bmr01 <- bmr (crins .es , X=X,

+ tau.prior=function (t){ dhalfnormal (t,s=0.5)})

We may then have a closer look at the analysis output:

R> bmr01

’bmr ’ object .

6 estimates :

Heffron (2003) , Gibelli (2004) , Schuller (2005) ,

Ganschow (2005) , Spada (2006) , Gras (2008)

2 regression parameters :

basiliximab , daclizumab

tau prior (proper ):

function (t){ dhalfnormal (t, scale =0.5)}
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<bytecode : 0x555bbca28478 >

beta prior: (improper ) uniform

MAP estimates :

tau basiliximab daclizumab

joint 2.183638 e-05 -1.287690 -2.307431

marginal 0.000000 e+00 -1.283294 -2.307270

marginal posterior summary :

tau basiliximab daclizumab

mode 0.0000000 -1.2832939 -2.3072701

median 0.2975462 -1.2832867 -2.3072414

mean 0.3420306 -1.2837755 -2.3072091

sd 0.2485756 0.3827227 0.5842337

95% lower 0.0000000 -2.0407937 -3.4589967

95% upper 0.8130176 -0.5252345 -1.1554177

(quoted intervals are shortest credible intervals .)

The function’s output again is very similar to the
bayesmeta() function’s output (see also [53]); at the top
we see details of the model specification, the number and
labels for the included studies, the number of regression
coefficients and the prior specification. The variable
names (here: “basiliximab” and “daclizumab”) were
taken from the column names of the regressor matrix.
Then maximum-a-posteriori (MAP) estimates are shown,
as well as summary statistics for the three parameters’
marginal posterior distributions. The median and 95%
CIs for the basiliximab and daclizumab parameters (β1

and β2) are given by −1.38 [−2.04, −0.53] and −2.31
[−3.46, −1.16], respectively. The treatment hence
appears to be effective in reducing AR events in both
study groups.

The (here: three) parameters’ marginal or joint poste-
rior distributions may also be inspected using the plot()

or pairs() functions. The posterior distributions may also
be accessed e.g. via the functions contained in the returned
object’s elements; for example, the bmr01$qposterior()

function allows to compute posterior quantiles. A call of

R> bmr01 $qposterior (tau.p=0.99)

[1] 1.072312

returns the heterogeneity posterior’s 99% quantile. Simi-
larly, using

R> bmr01 $qposterior (beta.p=0.99 , which.beta =1)

[1] -0.3548454

the 99% quantile of the β1 parameter may be
determined. The “which.beta” argument here is used
to specify the β parameter’s index. Analogously,
the “...$dposterior()”, “...$pposterior()”,
“...$rposterior()” and “...$post.interval()”
functions may be used to determine posterior density,
cumulative distribution function, random numbers or
credible intervals (the naming of functions here follows
the common R conventions, as e.g. known from the
dnorm() or pnorm() functions).

Estimates of the θi parameters (i = 1, . . . , k), the
shrinkage estimates, may also be derived. Some summary
statistics are provided in the “...$theta” element.

Access to the complete distributions (probability
density, cumulative distribution function, quantile
function, random number generation and credible
intervals) is provided via the “...$dshrink()”,
“...$pshrink()”, “...$qshrink()”, “...$rshrink()”
and “...$shrink.interval()” functions.

To illustrate the results in a forest plot, one may call

R> forestplot (bmr01 , xlab="log -OR")

The resulting plot is shown in Figure 1. The forest plot’s
first six lines show the original data (estimates yi and 95%
CIs based on standard errors σi and the normal model),
and the shrinkage estimates (θi). The table also includes
the regressor matrix X in the columns that are labelled as
“basiliximab” and “daclizumab”, as in the original speci-
fication of the “X” argument. The two lines at the bottom
then show the estimates of the two associated regression
parameters β1 and β2. The heterogeneity (τ) distribution
finally is also summarized at the bottom left.

Note that while in a simple meta-analysis shrinkage
estimates are “shrunk” towards the common overall mean,
in a meta-regression shrinkage acts in the direction of the
corresponding predicted value; in this case this means that
individual studies’ shrinkage estimates move towards the
corresponding (basiliximab or daclizumab) group means.

quoted estimate shrinkage estimate

study

Heffron (2003)

Gibelli (2004)

Schuller (2005)

Ganschow (2005)

Spada (2006)

Gras (2008)

basiliximab

daclizumab

basiliximab

0

1

0

1

1

1

1

0

daclizumab

1

0

1

0

0

0

0

1

estimate

−2.31

−0.46

−2.30

−1.76

−1.26

−2.42

−1.28

−2.31

95% CI

[−3.48, −1.13]

[−1.55, 0.63]

[−4.03, −0.58]

[−2.65, −0.86]

[−2.52, −0.00]

[−5.41, 0.58]

[−2.04, −0.53]

[−3.46, −1.16]

−5 −4 −3 −2 −1 0 1

log−ORHeterogeneity (tau): 0.30 [0.00, 0.81]

Figure 1: A forest plot illustrating the meta-regression results based
on the transplantation data from Table 2. The two study groups are
coded in terms of two binary indicator variables labelled “basilix-
imab” and “daclizumab”.

3.1.2. Inferring means, contrasts, or predictions

Quite commonly, it is also of interest to evaluate
the posterior distribution of linear combinations of
the regression coefficients (βi), or of predictions
corresponding to such combinations. For such purposes,
the “...$dpredict()”, “...$ppredict()”,
“...$qpredict()”, “...$rpredict()” and
“...$pred.interval()” functions are available.

In the present example, it may be of interest to in-
fer the difference of the two group means, β2 − β1. If
its posterior includes zero, then the two medications may
be equally effective; if zero is outside the plausible range,
this indicates differing efficacies. The above difference is
a linear combination of the two coefficients, i.e., a sum of
β2 −β1 = −1×β1+1×β2 with coefficients −1 and +1 for
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β1 and β2, respectively. We can request the linear com-
bination’s distribution by specifying the two coefficients,
e.g., in order to determine the median or a 95% CI:

R> bmr01 $qpredict (p=0.5, x=c(-1,1))

[1] -1.023955

R> bmr01 $pred. interval (level =0.95 , x=c(-1,1))

lower upper

-2.402393 0.354489

attr(,"interval .type")

[1] "shortest "

Such coefficients were in fact already quoted along with the
summary estimates in the forest plot in Figure 1, although
only involving zeroes and ones as coefficients. Analogously,
additional linear combinations can be specified for the plot;
e.g., to include the group difference in the figure, we may
specify

R> forestplot (bmr01 , xlab="log -OR",

+ X.mean=rbind ("basiliximab " = c( 1, 0),

+ "daclizumab " = c( 0, 1),

+ "group difference " = c(-1, 1)))

The resulting plot is shown in Figure 2 (top). It should be
noted that the comparison of basiliximab vs. daclizumab
constitutes an indirect comparison here, as it contrasts two
treatments that have not been “directly” compared in a
head-to-head comparison in any of the six trials considered
[40]. For more on indirect comparisons, see also Section 3.2
below.

Besides the mean effects, predictions are often of inter-
est, e.g., in order to assess plausible ranges for a “future”
study’s mean parameter θk+1 (which, in addition to the
β coefficients, also depends on the estimated amount of
heterogeneity τ). In the present example, we might be
interested in predicting the mean in a new study investi-
gating basiliximab; we can check out some quantiles of the
effect’s distribution via

R> bmr01 $qpredict (p=c(0.025 , 0.5, 0.975) ,

+ x=c(1,0), mean=FALSE)

[1] -2.4611428 -1.2835800 -0.1125025

We again need to specify the coefficients via the “x” argu-
ment, and the “mean” argument (which by default is TRUE)
needs to be set to FALSE explicitly.

3.1.3. Alternative regressor matrix setups

The specification of the regressor matrix X (see equa-
tion (8) above) is not unique; a number of different ap-
proaches are conceivable and common, for example, one
might as well specify

X =











1 1
1 0
1 1
1 0
1 0
1 0











or X =











1 +0.5
1 −0.5
1 +0.5
1 −0.5
1 −0.5
1 −0.5











(9)

to yield analogous results. Different setups will then imply
different interpretations for the associated β parameters.
Within R, the most common parametrization is also re-
turned by the model.matrix() function (from the stats

package); if we run
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Figure 2: Two forest plots similar to the one shown in Figure 1
and illustrating analogous meta-regression results based on differ-
ent parametrisations of the regressor matrix X (top: “group mean”
parametrization, bottom: “intercept/slope” parametrization; note
the differing setups in the 2nd and 3rd “regressor” columns).

R> X.alt <- model.matrix ( ˜ IL2RA , data=crins.es)

R> X.alt

(Intercept ) IL2RAdaclizumab

1 1 1

2 1 0

3 1 1

4 1 0

5 1 0

6 1 0

attr(,"assign ")

[1] 0 1

attr(,"contrasts ")

attr(,"contrasts ")$IL2RA

[1] "contr.treatment "

we can see that we in fact yield the first of the above
two versions, an “intercept/slope” parametrization, which
would often be the default for many regression models
within R. We may run the same analysis using this al-
ternative regressor matrix:

R> bmr02 <- bmr (crins .es , X=X.alt ,

+ tau.prior=function (t){ dhalfnormal (t,s=0.5)})

and generate a corresponding forest plot:

R> forestplot (bmr02 , xlab="log -OR",

+ X.mean=rbind("basiliximab " = c(1, 0),

+ "daclizumab " = c(1, 1),

+ "group difference " = c(0, 1)))

The resulting plot is shown in Figure 2 (bottom). We can
see that we get essentially identical results here, and that
we only need to specify the linear combinations differently
in order to retrieve group means or group differences based
on the differing parametrizations.

While in the above example the results are essentially
equivalent (see also Section 2.2), either way of formulating
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the problem may have its advantages. Interpretation of
parameters and prior specification may be easier or more
obvious in one or another formulation. In case informative
priors for the regression parameters β were to be used in
the above example, this may either imply considerations
of constraints on the two individual group means, or on
their difference.

For example, consider the two alternative parametriza-
tions in terms of

X =











1 +0.5
1 −0.5
1 +0.5
1 −0.5
1 −0.5
1 −0.5











and X⋆ =











0 1
1 0
0 1
1 0
1 0
1 0











. (10)

The implied parameters may be thought of as “overall
mean / group difference” or “two group mean” parame-
ters. The two associated parameter vectors β and β⋆ are
related to one another as

β⋆ =

(

β⋆
1

β⋆
2

)

=

(

β1 − 0.5β2

β1 + 0.5β2

)

= Aβ,

with A =

(

1 −0.5
1 +0.5

)

. (11)

Now suppose that in the former parametrization (β) we
want to implement a vague prior for the overall mean,
while the difference between groups is expected to be
rather small; for β we hence assume a normal prior with
mean and covariance

µ =

(

0
0

)

and Σ =

(

100 0
0 1

)

. (12)

The prior specification in the “overall mean / group dif-
ference” parametrization has its counterpart in the “two
group mean” parametrization; for the “transformed” pa-
rameter β⋆, this implies a prior distribution with mean
and covariance

µ⋆ = Aµ =

(

0
0

)

and (13)

Σ⋆ = AΣA′ =

(

100.25 99.75
99.75 100.25

)

. (14)

The high correlation reflects the assumption implemented
in the original parametrization that there is a constraint
on the difference between the means while their common
average level has greater uncertainty.

Performing the analysis using different parametriza-
tions and matching proper, informative priors should then
again yield identical sets of estimates as in the previous
example (Figure 2). The two analyses may be performed
via

R> bmr03 <- bmr(crins.es ,

+ X=cbind("mean"=rep (1,6),

+ " difference "=c(0.5, -0.5, 0.5,

+ -0.5, -0.5, -0.5)),

+ beta.prior.mean=c(0,0),

+ beta.prior.sd=c(10,1),

+ tau.prior=function (t){ dhalfnormal (t,s=0.5)})

R> bmr04 <- bmr (crins .es , X=X,

+ beta.prior .mean=c(0,0),

+ beta.prior .cov=cbind(c(100.25 , 99.75) ,

+ c(99.75 , 100.25)) ,

+ tau.prior=function (t){ dhalfnormal (t,s=0.5)})

We may then check the corresponding estimates (of the
two group means, the overall mean and the group differ-
ence) via the summary() function, which allows to spec-
ify an “X.mean” argument, similarly to the forestplot()
function; for example:

R> smry03 <- summary (bmr03 ,

+ X.mean=rbind("basiliximab " = c(1, -0.5),

+ "daclizumab " = c(1, +0.5) ,

+ "average " = c(1, 0),

+ "difference " = c(0, 1)))

R> smry04 <- summary (bmr04 ,

+ X.mean=rbind("basiliximab " = c(1, 0),

+ "daclizumab " = c(0, 1),

+ "average " = c(0.5, 0.5),

+ "difference " = c(-1, 1)))

We may first double check the differing setups of the un-
derlying regressor matrices:

R> smry03 $X.mean

mean difference

basiliximab 1 -0.5

daclizumab 1 0.5

average 1 0.0

difference 0 1.0

R> smry04 $X.mean

basiliximab daclizumab

basiliximab 1.0 0.0

daclizumab 0.0 1.0

average 0.5 0.5

difference -1.0 1.0

and then check the resulting estimates:

R> smry03 $mean[,c(2,5,6)]

median 95% lower 95% upper

basiliximab -1.3736003 -2.094845 -0.6670075

daclizumab -2.0821175 -3.077314 -1.0710786

average -1.7288302 -2.394382 -1.0591354

difference -0.7062405 -1.811174 0.4232024

R> smry04 $mean[,c(2,5,6)]

median 95% lower 95% upper

basiliximab -1.3736003 -2.094845 -0.6670075

daclizumab -2.0821175 -3.077314 -1.0710786

average -1.7288302 -2.394382 -1.0591354

difference -0.7062405 -1.811174 0.4232024

and indeed the corresponding estimates are identical under
both model variations (and different from those shown in
Figure 2, which were based on uniform priors).

3.1.4. Connection to meta-analysis without covariables

Meta-regression is a generalization of a “simple” meta-
analysis, and the simple meta-analysis again constitutes
the special case of a regression that does not consider ad-
ditional covariables (besides an overall “intercept” term).
We may also use the bmr() function without covariables
by simply omitting the “X” argument:

R> bmr05 <- bmr (crins .es ,

+ tau.prior=function (t){ dhalfnormal (t, s=0.5)})
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We can check the regressor matrix used internally (which
here may be accessed as “bmr05$X”) to see that indeed
this is by default a matrix consisting of a single column of
ones, so that a single “intercept” parameter β1 is fitted.

We may then compare results against those from the
bayesmeta() function; comparing the estimates for the
overall mean, we get

R> bma <- bayesmeta (crins .es ,

+ tau .prior =function (t){ dhalfnormal (t,s=0.5)})

R> cbind ("bmr" =bmr05$summary [,"intercept "],

+ "bayesmeta "=bma$summary [,"mu"])

bmr bayesmeta

mode -1.5771362 -1.5779534

median -1.5830833 -1.5834970

mean -1.5871400 -1.5873257

sd 0.3310698 0.3314634

95% lower -2.2465774 -2.2464090

95% upper -0.9341840 -0.9338935

Differences between the two results are due to differences
in numerical accuracy; if we check the number of
support points used internally for the approximation
of the posterior (via “str(bmr05$support)” or
“str(bma$support)”), we can see that bmr() uses
9 support points, while bayesmeta() yields a grid of
17 points. The slight discrepancy arises since within the
bayesmeta() function, the grid setup is determined
based on the marginal distribution of the overall mean
(µ) as well as the shrinkage estimates (θi) [53], while in
bmr() only the regression coefficients’ (multivariate)
distribution is considered. If desired, accuracy may
always be increased by adjusting the “delta” or
“epsilon” parameters [54].

In the two-group comparison discussed above (see e.g.
Figure 2), the two group means (basiliximab and
daclizumab) are estimated “independently” in some
sense, i.e., the estimates from one group of studies only
help estimating the other group’s mean insofar as they
provide information on the heterogeneity, but not on the
actual location. The difference to performing two
completely separate analyses of both group means is the
assumption of a common heterogeneity parameter for
both groups. This provides another connection to the
“simple” meta-analysis model (without additional
covariables): the two group mean estimates may also be
recovered by performing two separate meta-analyses and
propagating only the heterogeneity information. Consider
the estimate of the daclizumab group, which was given by

R> bmr01 $summary [, " daclizumab ", drop=FALSE ]

daclizumab

mode -2.3072701

median -2.3072414

mean -2.3072091

sd 0.5842337

95% lower -3.4589967

95% upper -1.1554177

The same estimate may be derived by first performing the
analysis for the basiliximab group only, and then using
the resulting heterogeneity posterior as the prior for the
subsequent daclizumab analysis:

R> basil <- (crins .es$IL2RA ==" basiliximab ")

R> dacli <- (crins .es$IL2RA ==" daclizumab "))

R> bma .bas <- bayesmeta (crins.es[basil ,],

+ tau.prior=function (t){ dhalfnormal (t,s=0.5)})

R> bma .dac <- bayesmeta (crins.es[dacli ,],

+ tau.prior=function (t){ bma.bas$dposterior (

+ tau =t)})

R> bma .dac$summary [, "mu", drop=FALSE]

mu

mode -2.3072954

median -2.3072387

mean -2.3072071

sd 0.5847048

95% lower -3.4596942

95% upper -1.1547187

One can see that the results are essentially identical, with
slight discrepancies that may be attributed to numerical
differences.

3.2. Indirect comparisons in a treatment network

It became already evident in the previous example
(Section 3.1.2) that fitting individual coefficients for
certain pairwise comparisons, along with the option to
infer linear combinations of coefficients, allows to
estimate certain indirect comparisons [40]. In fact,
applicability of the meta-regression model to some degree
extends into the domain of network meta-analysis
(NMA) [35, Sec. 11.4.2]. However, the scope here is
somewhat limited, insofar as the model is contrast-based,
only two-armed trials may be considered, and a single
common heterogeneity parameter is assumed [58, 16, 72].

For illustration, we will consider the example data set
due to Bucher et al. [5], which includes studies providing
evidence for both the direct as well as the indirect com-
parison of two treatments. Bucher et al. considered the
example of the comparison of sulphametoxazole-trimetho-
prim (TMP-SMX) versus dapsone/pyrimethamine (D/P)
for the prophylaxis of Pneumocystis carinii pneumonia
(Pcp) in HIV patients. Eight studies had undertaken a
head-to-head comparison of both medications, but an ad-
ditional 14 studies were available investigating one of the
medications with aerosolized pentamidine (AP) as a com-
parator. Nine studies compared TMP-SMX vs. AP, and

TMP−SMX D/P

AP

8

59

Figure 3: Illustration of the triangular network of comparisons within
the Bucher et al. [5] example data set. 8 studies provide a direct
head-to-head comparison of TMP-SMX vs. D/P (indicated by the
blue edge); the remaining 14 studies (shown in red) provide indirect
evidence on the effect via the comparison of either TMP-SMX versus
AP (9 studies), or D/P versus AP (5 studies).
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five studies compared D/P vs. AP. Together these provide
indirect evidence on the effect of TMP-SMX compared to
D/P. The resulting triangular network of pairwise com-
parisons is illustrated in Figure 3.

We may load the data and compute effect sizes (log-
ORs) for all 22 studies.

R> data("BucherEtAl1997")

R> es <- escalc (measure ="OR",

+ ai=events .A, n1i=total.A,

+ ci=events .B, n2i=total.B,

+ slab=study , data=BucherEtAl1997)

We may then set up the regressor matrix to estimate the
two relevant (non-redundant) treatment effects. Two coef-
ficients (β1 and β2) are estimated; the first corresponds to
the comparison of TMP-SMX against D/P, the second is
for the comparison of AP again D/P, and the last remain-
ing pairwise comparison (TMP-SMX vs. AP) then results
as the difference of the former two.

R> X <- cbind("TMP.DP"=rep(c(1,0, 1), c(8,5,9)),

+ "AP.DP" =rep(c(0,1,-1), c(8 ,5 ,9)))

Again, there are alternative (equivalent) ways to set up
the regressor matrix [58]. The actual analysis then is per-
formed via a call of

R> bmr06 <- bmr(es , X=X)

The “tau.prior” argument is left unspecified, which
means that the default of an (improper) uniform prior is
used for τ , which should be appropriate given the
reasonably large number of studies included here
(k = 22) [56]. Figure 4 illustrates the data along with the
regressor matrix and the estimated coefficients in a
corresponding forest plot.

In order to more closely investigate and contrast the
“direct” and “indirect” contributions to specific estimates,

quoted estimate shrinkage estimate

study

Antinori (1992)

Mallolas (1992)

Tocchetti (1994)

Bozzette (1995)

Blum (1995)

Podzamczer (1993)

Podzamczer (1995)

Sirera (1995)

Slavin (1992)

Girard (1993)

Torres (1993)

Opravil (1995)

Salmon (1995)

Rozenbaum (1991)

Hardy (1992)

Schneider (1992)

Smith (1992)

Michelet (1993)

May (1993)

Stellini (1994)

Nielsen (1995)

Rizzardi (1995)

TMP−SMX vs. D/P

AP vs. D/P

TMP−SMX vs. AP

comparison

TMP−SMX vs. D/P

TMP−SMX vs. D/P

TMP−SMX vs. D/P

TMP−SMX vs. D/P

TMP−SMX vs. D/P

TMP−SMX vs. D/P

TMP−SMX vs. D/P

TMP−SMX vs. D/P

AP vs. D/P

AP vs. D/P

AP vs. D/P

AP vs. D/P

AP vs. D/P

TMP−SMX vs. AP

TMP−SMX vs. AP

TMP−SMX vs. AP

TMP−SMX vs. AP

TMP−SMX vs. AP

TMP−SMX vs. AP

TMP−SMX vs. AP

TMP−SMX vs. AP

TMP−SMX vs. AP

TMP.DP

1

1

1

1

1

1

1

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

0

1

AP.DP

0

0

0

0

0

0

0

0

1

1

1

1

1

−1

−1

−1

−1

−1

−1

−1

−1

−1

0

1

−1

estimate

−2.38

−0.94

−1.17

0.08

0.19

−1.55

−2.71

−0.53

−0.04

−0.02

−0.21

0.28

0.84

−1.21

−1.10

−3.34

−0.88

−1.41

−0.96

−1.82

−2.22

−0.13

−0.75

0.23

−0.99

95% CI

[−4.48, −0.29]

[−2.30, 0.41]

[−4.45, 2.11]

[−0.39, 0.54]

[−2.61, 3.00]

[−2.84, −0.25]

[−5.60, 0.18]

[−1.60, 0.54]

[−1.09, 1.01]

[−0.92, 0.88]

[−0.97, 0.55]

[−0.53, 1.08]

[−0.24, 1.93]

[−4.45, 2.04]

[−1.76, −0.43]

[−6.23, −0.45]

[−2.38, 0.63]

[−3.63, 0.82]

[−2.63, 0.70]

[−4.91, 1.27]

[−4.34, −0.10]

[−1.35, 1.09]

[−1.32, −0.25]

[−0.26, 0.71]

[−1.54, −0.48]

−4 −2 0 2

log−ORHeterogeneity (tau): 0.4070 [0.0086, 0.7883]

Figure 4: Forest plot for the network-MA data set [5]. The first
8 studies did a direct head-to-head comparison of TMP-SMX vs.
D/P; the remaining studies provide indirect evidence on the effect
via the comparison with AP. At the bottom, the estimates for all
three pairwise comparisons are shown.

log−OR (TMP−SMX vs. D/P)

direct:

indirect:

direct + indirect:

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

Figure 5: Posterior distributions for the β coefficient correspond-
ing to the log-OR in the comparison of TMP-SMX vs. D/P, either
considering only the studies providing direct or indirect evidence, or
including all studies. Besides posterior densities, posterior medians
and 95% CIs are indicated.

we may have a closer look at the estimates resulting from
considering subsets of the data. In addition to the anal-
ysis described above, we may run analyses based only on
the subsets of studies providing direct or indirect evidence
(studies 1–8 or studies 9–22):

R> bmr06.direct <- bmr(es[1:8,], X=X[1:8 ,1])

R> bmr06.indirect <- bmr(es[9:22,], X=X[9:22 ,])

In the overall analysis, the log-OR for the effect of TMP-
SMX vs. D/P is estimated at −0.75 with 95% CI [−1.32,
−0.25]; the “direct” and “indirect” estimates are roughly
similar and overlapping at −0.83 [−1.91, 0.06] and −0.96
[−1.73, −0.21]. We may also inspect the corresponding
posterior densities, which again are accesssible via the re-
turned “...$dposterior()” functions. In Figure 5, the
three posteriors are contrasted side-by-side. All three es-
timates are consistent, and when combining direct and in-
direct evidence, the gain in precision becomes apparent.

3.3. Continuous covariable

Nicholas et al. [49] performed a systematic review and
meta-analysis in order to examine how the characteristics
of placebo groups of randomized controlled trials in mul-
tiple scelerosis may have evolved over time. A number of
features were investigated, among these was the propor-
tion of patients experiencing disability progression within
24 months. 28 studies with available information on dis-
ability progression were found, spanning the period from
the year 1990 until 2018. A time trend in the progres-
sion rates would mean a tendency towards more severe or
more benign cases being investigated over the years, and
may have implications for the comparability of results from
older or more recent studies, or also for the design of fu-
ture studies. We can load the example data, and from the
studies’ placebo group sizes and the observed percentages
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of progressing patients, we can compute estimates of the
logarithmic odds of disease progression using the escalc()
function:

R> data("NicholasEtAl2019")

R> head( NicholasEtAl2019)

study year patients prog.percent

1 Kastrukoff (1990) 1990 50 46.0

2 Wolinsky (1990) 1990 274 72.5

3 Bornstein (1991) 1991 55 29.5

4 Likosky (1991) 1991 20 80.0

5 Noseworthy (1991) 1991 56 22.0

6 Milanese (1992) 1992 21 55.0

R> es <- escalc (measure ="PLO ",

+ xi=patients *(prog.percent /100), ni=patients ,

+ slab=study , data= NicholasEtAl2019)

R> head(es[,c(1,2,5,6)])

study year yi vi

1 Kastrukoff (1990) 1990 -0.1603 0.0805

2 Wolinsky (1990) 1990 0.9694 0.0183

3 Bornstein (1991) 1991 -0.8712 0.0874

4 Likosky (1991) 1991 1.3863 0.3125

5 Noseworthy (1991) 1991 -1.2657 0.1041

6 Milanese (1992) 1992 0.2007 0.1924

The “yi” and “vi” columns here give the log-odds and
their (squared) standard errors. The (continuous) covari-
able of interest is given in the “year” column. We may
then specify the regressor matrix:

R> X <- cbind("intercept2000" = 1,

+ "year" = (es$year -2000))

R> head(X)

intercept2000 year

[1,] 1 -10

[2,] 1 -10

[3,] 1 -9

[4,] 1 -9

[5,] 1 -9

[6,] 1 -8

Note that here we are using to a simple “intercept/slope”
model, and that the “year” variable is re-coded so that
the data are centered at the year 2000 (and the intercept
parameter hence corresponds to the log-odds in 2000). We
may then perform the analysis:

R> bmr07 <- bmr(es , X=X)

A prior for the heterogeneity (τ) again is not specified,
implying that he default of an (improper) uniform prior is
used [56].

We may inspect the regression results based on the re-
turned parameter estimates, but it may in fact be more il-
lustrative to present these in a forest plot. Besides the two
“plain” parameter estimates (intercept β1 and slope β2) we
may check estimates of certain linear combinations corre-
sponding to the mean at certain time points, or also to
predicted values. A call of

R> forestplot (bmr07 , xlab="log -odds",

+ X.mean=rbind ("intercept (2000) " =c(1, 0),

+ "annual change " =c(0, 1),

+ "change per decade " =c(0, 10),

+ "mean 1990" =c(1,-10),

+ "mean 2000" =c(1, 0),

+ "mean 2010" =c(1, 10),

+ "mean 2018" =c(1, 18)),

+ X.predict =rbind ("prediction 2019"=c(1, 19)))
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Figure 6: A forest plot illustrating the meta-regression results based
on the multiple sclerosis data. The time trend is parameterized in
terms of an intercept and a year variable that is centered at the
year 2000. In addition to the “plain” intercept and (annual) slope,
several linear combinations as well as a prediction for the year 2019
are also shown.

will generate a forest plot including the intercept and slope
(annual change), the change per decade, the mean log-
odds at several time points, as well as a prediction for
the year 2019; the resulting plot is shown in Figure 6.
The annual change is estimated to be negative, implying
a reduction in the log-odds by 0.033 per year, or by 0.33
per decade. For the odds this means a reduction by 3.2%
per year, or by 28% per decade.

Besides the forest plot, it is often useful to illustrate the
data along with the model estimates graphically. To that
end, we can compute predictions and credible intervals and
combine these in a single plot:

R> # specify corresponding "regressor matrix ":

R> newx <- cbind (1, (1989:2019) -2000)

R> # compute credible intervals for the mean:

R> pred <- cbind("median "=bmr07$qpred (0.5,x=newx),

+ bmr07$pred.interval (x=newx))

R> # compute prediction intervals:

R> map <- cbind ("median "=bmr07 $qpred (0.5, x=newx ,

+ mean=FALSE ),

+ bmr07 $pred. interval (x=newx ,

+ mean=FALSE ))

R> # show the 26 studies ’ point estimates

R> # and 95 percent CIs:

R> plot(es$year -2000 , es$yi ,

+ xlim=range (newx [,2]), ylim=range(map ),

+ xlab="publication year - 2000",

+ ylab="log -odds")

R> matlines (rbind(es$year , es$year )-2000,
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Figure 7: A plot illustrating the multiple sclerosis data along with
credible intervals for the mean as well as prediction intervals.

+ rbind (es$yi -qnorm (0.975) *sqrt(es$vi),

+ es$yi+qnorm (0.975) *sqrt(es$vi)),

+ col =1, lty =1)

R> # show trend lines (and 95 percent intervals):

R> matlines (newx[,2], map ,col ="blue",lty=c(1,2,2))

R> matlines (newx[,2], pred ,col="red ",lty=c(1,2,2))

R> legend ("topright ",pch =15, col =c("red","blue"),

+ c("mean"," prediction "))

The resulting trend plot is shown in Figure 7. All esti-
mates (studies) along with their error bars are shown, and
the estimated mean (along with credible and prediction
intervals) is computed for a grid of values spanning the
range from 1989 to 2019.

Nicholas et al. [49] pointed out the good agreement
with a subsequently published study by Kappos et al. [38]
in 2018, who (depending on the exact definition used) re-
ported between 23% and 30% progressing patients, corre-
sponding to log-odds of −1.18 or −0.83, respectively.

The predicted log-odds were -0.87 [-2.17, 0.42] for a
“future” study in the year 2019 (see Figure 6), correspond-
ing to probabilities of 0.29 [0.10, 0.60]. Such a prediction
could be useful for study design [15, 25, 20] or sample size
determination [14]; it might also be utilized to supplement
a study’s sparse placebo data in terms of a meta-analytic-
predictive (MAP) prior [61].

3.4. Several covariables

Roberge et al. [51] performed a systematic literature
review in order to summarize the evidence on effects of
aspirin administered during pregnancy. Earlier research
had already suggested that prophylactic administration of
low-dose aspirin may reduce the prevalence of fetal growth
restriction (FGR), which is a common cause of perinatal
morbidity and mortality [48]. While the exact mechanism
by which aspirin works here is still unclear, it had become
apparent that it is most effective when initiated early on,
before 16 weeks of gestational age.

A total of 35 studies were included in the eventual anal-
ysis; in 17 studies, therapy was initiated early (≤16 weeks

gestational age), and in 18 studies, onset was late (>16
weeks). Doses differed between studies and ranged from 50
up to 150mg daily. For each study, we have numbers of
cases and FGR events in treatment and control groups.

We may load the example data and derive the log-ORs
for all studies providing data on FGR events:

R> data(" RobergeEtAl2017")

R> es.fgr <- escalc (measure ="OR",

+ ai=asp.FGR .events , n1i=asp .FGR.total ,

+ ci=cont.FGR.events , n2i=cont.FGR.total ,

+ slab=study , data=RobergeEtAl2017 ,

+ subset =

+ complete .cases (RobergeEtAl2017 [ ,11:14]))

At first we can check whether the aspirin dose appears to
affect the chances of FGR; we can use the model.matrix()
function to set up a corresponding regressor matrix and
perform a simple analysis specifying an intercept and a
linear effect for the dose. Again, due to the large num-
ber of studies included, we may utilize a non-informative
(improper) uniform prior for the heterogeneity.

R> X01 <- model .matrix ( ˜ dose , data=es.fgr)

R> colnames (X01 ) <- c("intercept ", "dose")

R> head(X01)

intercept dose

01 1 50

02 1 60

03 1 60

04 1 60

06 1 75

07 1 75

> bmr08 <- bmr(es.fgr , X=X01)

> bmr08$summary

tau intercept dose

mode 0.27075394 0.08446175 -0.004604890

median 0.28349590 0.08799880 -0.004864835

mean 0.29005627 0.09099202 -0.005005075

sd 0.11591364 0.30196489 0.003685612

95% lower 0.06368288 -0.50870208 -0.012461472

95% upper 0.52626505 0.69503106 0.002157158

So far, this does not convincingly indicate an effect; while
the “dose” effect is estimated to be negative, implying a
reduction in FGR events with increasing dose, the 95% CI
includes both negative as well as positive values.

Considering the earlier suggestion of the relevance of
the timepoint of therapy initiation, we may then check
whether the effect might differ between studies implement-
ing an “early” or “late” onset. Such a model may be de-
fined in different ways; here we will consider a setup in-
cluding individual intercepts and slopes in both groups of
studies:

R> X02 <- model .matrix ( ˜ -1 + onset + onset:dose ,

+ data=es.fgr)

R> colnames (X02 ) <- c("intEarly ", "intLate ",

+ "doseEarly ", "doseLate ")

R> head(X02)

intEarly intLate doseEarly doseLate

01 1 0 50 0

02 1 0 60 0

03 1 0 60 0

04 1 0 60 0

06 1 0 75 0

07 1 0 75 0
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We can see that the first studies within the data set all
belong to the “early” group; in the second group, the re-
gressor matrix entries correponding to the “late” effects
then are non-zero instead. We may then run the analysis
based on the extended model:

R> bmr09 <- bmr(es.fgr , X=X02)

R> bmr09 $summary [ ,1:3]

tau intEarly intLate

mode 0.08758667 0.4290267 0.05426766

median 0.11720808 0.4263765 0.04654656

mean 0.13062301 0.4248359 0.04167659

sd 0.09016564 0.5201030 0.24672617

95% lower 0.00000000 -0.5970099 -0.45148496

95% upper 0.29774638 1.4449251 0.52534390

R> bmr09 $summary [ ,4:5]

doseEarly doseLate

mode -0.014014415 -0.001538704

median -0.013981904 -0.001491126

mean -0.013970065 -0.001474899

sd 0.006281788 0.002990934

95% lower -0.026280559 -0.007383067

95% upper -0.001626998 0.004450449

From the analysis results, we now see a somewhat different
picture; first of all, the heterogeneity (τ) is reduced, from
a median of 0.28 down to 0.12. The “late” slope parameter
still is small and centered near zero, while the “early” slope
parameter along with its 95% CI is on the negative side.

We may illustrate data and regression lines jointly in
a “bubble plot”; the estimated ORs as functions of the re-
gressors may again be extracted from the bmr() function’s
output:

R> # derive predictions from the model;

R> # specify corresponding " regressor matrices":

R> newx.early <- cbind (1, 0, seq (50,150, by=5), 0)

R> newx.late <- cbind (0, 1, 0, seq (50,150, by=5))

R> # compute predicted medians

R> # and 95 percent intervals:

R> pred.early <- cbind("median "=bmr09 $qpred (0.5,

+ x=newx.early),

+

bmr09 $pred.interval (x=newx.early ))

R> pred.late <- cbind("median "=bmr09$qpred (0.5,

+ x=newx.late),

+ bmr09$pred.interval (x=newx.late))

R> # draw "bubble plot":

R> plot(es.fgr $dose , es.fgr$yi,

+ cex =1/sqrt(es.fgr $vi),

+

col =c("blue","red")[as.numeric (es.fgr $onset )],

+ xlab="dose (mg)", ylab="log -OR (FGR )")

R> legend ("topright ", col =c("blue","red"),

+ c("early onset", "late onset"), pch =1)

R> # add predictions to bubble plot:

R> matlines (newx.early [,3], pred.early ,

+ col ="blue", lty=c(1,2,2))

R> matlines (newx.late[,4], pred.late ,

+ col ="red", lty=c(1,2,2))

The resulting trend plot is shown in Figure 8. “Larger”
studies (those with smaller standard errors) are denoted
by larger symbols.

Again, a range of alternative model or prior specifica-
tions may be sensible here; e.g., different parametrizations
(common intercept or slope parameters, individual hetero-
geneity parameters, differing prior specifications, a zero in-
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Figure 8: A “bubble plot” illustrating the data along with credible
intervals for the mean effect as functions of the dose in “early” and
“late” study groups. The point sizes are inversely proportional to
the standard errors.

tercept, . . . ), which may also suggest the use of a model
selection approach (see following Section 3.5). In addition,
it may also be interesting to investigate the sensitivity of
results to individual data points (studies).

3.5. Model selection

3.5.1. The example setup

Cinar et al. [9] discussed a meta-analysis problem in-
volving a total of four potential covariables. Their example
data set included 80 studies investigating biomass produc-
tion of maize plants under different conditions; of interest
were the effects of inoculation using symbiotic mycorrhizal
fungi. Four dichotomous aspects varied between the stud-
ies, namely the type of fungus (FUN, funneliformis or rhi-
zophagus), the use of phosphorus fertilizer (FP, yes/no),
use of nitrogen fertilizer (FN, yes/no), and sterilization of
the soil (STER, yes/no). The endpoint was expressed in
terms of a logarithmic response ratio [32], and the problem
was first of all to determine which of the variables affected
the yield, making this a variable selection or model selec-
tion problem.

In the present case, combinations of the four (binary)
variables allow to specify 16 different models, ranging from
the model without covariables (besides an overall inter-
cept) to the model with all four included. In a Bayesian
context, after specification of prior probabilities (for all
models themselves, as well as for parameters within mod-
els), one may then derive posterior probabilities for each
model, or one may compare and rank models based on
their associated Bayes factors [23, 63, 4, 39]. The un-
certainty involved in the model selection may also be ac-
counted for (or in fact, the selection of a single model is
avoided) by using a model averaging approach [50, 37, 10,
11, 55]. Another approach may be to consider the median
probability model based on all variables’ marginal inclu-
sion probabilities [2, 3]. Either way, computations hinge
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on the determination of marginal likelihoods, which first
of all is often computationally challenging, and secondly,
requires the specification of proper priors for all param-
eters within the 16 models. Unlike in many parameter
estimation problems, the exact details of (non-informative
or weakly informative) prior specifications are crucial and
may affect results in sometimes unintuitive ways, as ex-
emplified in Lindley’s paradox [44, 23], so that particular
caution is advised here. In some cases, it may be worth
considering whether a model selection approach is in fact
the method of choice [22].

3.5.2. Model specification

We assume all of the 16 possible models to be a priori
equally likely; within each model we then assign a vague
prior for the intercept (normal with mean zero and stan-
dard deviation 10), and weakly informative priors for the
binary covariables’ effects (normal with mean zero and
standard deviation 2.82). The effect prior confines the
likely effect magnitudes on their logarithmic scale so that
back on the (exponentiated) scale of response ratios these
roughly correspond to values within factors of 250 and 1

250
[27]. For the heterogeneity parameter (τ), we assume a
weakly informative half-normal distribution with scale 0.5
[56].

Note that equal prior probabilities for all models imply
that all variables a-priori have 50% inclusion probability,
and that the prior expected number of parameters is N

2
(where N is the total number of variables). Alternatively,
different specifications are also conceivable; for example,
assigning a probability π for each variable to be included
implies a probability πn(1−π)(N−n) for each single model
(where n is the number of variables included) and it implies
a priori a binomially distributed total number of included
parameters (with expectation πN).

3.5.3. Implementation

The example data are available in Cinar et al.’s online
supplement [8]. We may download the data, read them
into R, and then systematically apply the 16 possible meta-
regression models. Computations may take a few minutes.

R> # load data:

R> CinarEtAl2021 <- read.csv ("CinarEtAl2021.csv")

R> # convert effect sizes:

R> effsize <- escalc (measure ="ROM", yi=yi , vi=vi,

+ data=CinarEtAl2021)

R> head(effsize )

FUN FP FN STER yi vi

1 0 0 0 0 0.0950 0.4000

2 0 0 0 0 -1.8590 0.4000

3 0 0 0 0 0.3640 0.6667

4 0 0 0 0 0.2880 0.4000

5 0 0 0 0 0.1310 0.2500

6 0 0 0 0 0.0000 0.4000

R> # figure out possible models

R> # (factor combinations):

R> models <- expand .grid("FUN"=c(FALSE ,TRUE),

+ "FP"=c(FALSE ,TRUE),

+ "FN"=c(FALSE ,TRUE),

+ "STER"=c(FALSE ,TRUE))

R> models <- as.matrix (models )

R> rownames (models ) <- LETTERS [1:16]

R> # generate list of 16 regressor matrices:

R> Xlist <- vector (nrow(models ), mode="list")

R> names(Xlist) <- rownames (models )

R> for (i in 1: nrow(models )) {

+ Xlist [[i]] <- matrix (

+ rep (1, nrow(CinarEtAl2021)),

+ ncol=1, dimnames =list(NULL , "intercept "))

+ if (any (models [i ,])) {

+ Xlist [[i]] <- cbind(Xlist [[i]],

+ as.matrix ( CinarEtAl2021[ ,1:4])[ , models [i ,]])

+ colnames (Xlist [[i]]) <- c("intercept ",

+ colnames (models )[ models [i,]])

+ }

+ }

R> # perform 16 regression analyses:

R> bmrlist <- vector (nrow(models ), mode="list")

R> names(bmrlist ) <- rownames (models )

R> for (i in 1: nrow(models )) {

+ bmrlist [[i]] <- bmr(effsize , X=Xlist [[i]],

+ tau.prior=function (t){ dhalfnormal (t ,0.5)} ,

+ beta.prior.mean=rep (0, ncol(Xlist [[i]])),

+ beta.prior.sd=c(10,

+ rep (2.82 ,

+ ncol(Xlist [[i]]) -1)))

+ }

The 16 regression outputs are now stored in the “bmrlist”
object. The marginal likelihood for a bmr() output is
stored in the “...$marginal.likelihood” element (pre-
suming that proper priors have been used for the analysis).
We may now assemble these numbers, and combine them
with the models’ prior probabilities to derive the posterior
probabilities.

R> # specify model prior probabilities:

R> priorprob <- rep (1/16, 16)

R> # assemble marginal likelihoods

R> margi <- sapply (bmrlist ,

+ function (x){x$marginal .likelihood })

R> # determine posterior model probabilities:

R> prob <- (priorprob *margi )/sum (priorprob *margi)

Table 3 illustrates the 16 models along with their pos-
terior probabilities. The a-posteriori most probable model
at the top of the list is the one including (besides an inter-
cept) the FP and FN variables, corresponding to influential
effects for phosphorus and nitrogen fertilizers.

The median probability model, i.e., the model including
all those variables that have a marginal inclusion probabil-
ity ≥0.5 [2, 3], here also coincides with the most probable
model. The three most probable models also match the
top 3 models based on the Akaike information criterion
(AIC) as quoted by Cinar et al. [9].

Table 4 shows the parameter estimates from the most
probable model. Instead of singling out one “best” model
for inference, one might now also utilize the results in a
model averaging approach, effectively using all 16 models
simultaneously and weighting predictions based to their
associated probabilities [50, 37, 10, 11, 55].

It should be noted that, in a sense, the example shown
here was particularly “simple” since all variables consid-
ered were in the same “units” (binary), so that it is rel-
atively easy to specify a neutral prior without favouring
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Table 3: The 16 models and their probabilities (in descending order).
A dot (•) indicates that a variable is included in a model, an open
circle (◦) means that it is not included. The very last line shows the
four variables’ marginal inclusion probabilities.

included variables

model FUN FP FN STER probability

1 ◦ • • ◦ 0.6293
2 ◦ • • • 0.1076
3 • • • ◦ 0.0907
4 • • ◦ ◦ 0.0645

5 ◦ • ◦ • 0.0380
6 • • ◦ • 0.0304
7 • • • • 0.0148
8 ◦ • ◦ ◦ 0.0106

9 • ◦ ◦ ◦ 0.0077
10 • ◦ ◦ • 0.0019
11 ◦ ◦ ◦ • 0.0014
12 ◦ ◦ ◦ ◦ 0.0011

13 • ◦ • ◦ 0.0009
14 ◦ ◦ • ◦ 0.0007
15 • ◦ • • 0.0002
16 ◦ ◦ • • 0.0002

0.2111 0.9859 0.8444 0.1946

Table 4: Parameter estimates for the most probable model including
the FP and FN variables (phosphorus and nitrogen fertilizers), which
receives a posterior probability of 0.63.

parameter median 95% CI

heterogeneity (τ) 0.510 [0.339, 0.690]
intercept (β1) 0.227 [-0.097, 0.652]
FP (β2) -1.006 [-1.416, -0.582]
FN (β3) 0.894 [0.429, 1.346]

any of the variables from the start. In practice, it might
also be of interest to check the results’ sensitivity to any
of the prior specifications, or to also investigate the pos-
sible relevance of interaction effects (as a simple additive
effect of the two fertilizers may or may not be biologically
plausible).

In the model selection context, the use of penalized
complexity priors [41] may also play a more prominent
role than in “simple” meta-analysis applications. Penal-
ized complexity priors here correspond to exponential pri-
ors for the heterogeneity (τ) [56].

4. Discussion

In the present article, we demonstrated the use of
Bayesian meta-regression as facilitated through the

bayesmeta R package [52]. The implementation is
conveniently based on the direct algorithm [54] and
constitutes a straightforward generalisation of “simple”
meta-analysis within the NNHM framework [53]. This
way, a wide range of extensions such as subgroup
analysis, continuous covariables, indirect comparisons, or
model selection are covered.

In many applications, use of the bmr(), forestplot()
and summary() functions may already be sufficient to ad-
dress most relevant questions. More sophisticated investi-
gations are possible using the comprehensive output avail-
able (such as custom plots (see Sections 3.2–3.4), model
selection (see Section 3.5) or model averaging [55]).

The meta-regression approach presented her builds on
the NNHM. Alternatively, generalized linear mixed mod-
els could be used with advantages in particular in settings
with sparse data [65, 70]. Such models can be fitted for
instance using the R package brms [6].

In the applications we included indirect comparisons as
a very basic example of a treatment network. More com-
plex models commonly applied for network meta-analysis
(see e.g. [35, Sec. 11]) are currently not implemented in
the bayesmeta package. Dedicated packages are avail-
able for network meta-analyis, for instance nmaINLA in
the Bayesian, and netmeta in the frequentist framework
[26, 57]. Furthermore, the R package MetaStan imple-
ments meta-analysis and meta-regression including also
model-based meta-analysis [28, 46] for binary data based
on the binomial-normal hierarchical model. These are arm
based models allowing for arm-level covariates. Recently
Williams et al. [73] proposed meta-anaytic modesls with
covariate effects on the heterogeneity variance besides the
mean; these are implemented in the R package blsmeta.
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